Differentiated NSC-34 cells as an in vitro cell model for VX.
نویسندگان
چکیده
The US military has placed major emphasis on developing therapeutics against nerve agents (NA). Current efforts are hindered by the lack of effective in vitro cellular models to aid in the preliminary screening of potential candidate drugs/antidotes. The development of an in vitro cellular model to aid in discovering new NA therapeutics would be highly beneficial. In this regard, we have examined the response of a differentiated hybrid neuronal cell line, NSC-34, to the NA VX. VX-induced apoptosis of differentiated NSC-34 cells was measured by monitoring the changes in caspase-3 and caspase-9 activity post-exposure. Differentiated NSC-34 cells showed an increase in caspase-3 activity in a manner dependent on both time (17-23 h post-exposure) and dose (10-100 nM). The maximal increase in caspase-3 activity was found to be at 20-h post-exposure. Caspase-9 activity was also measured in response to VX and was found to be elevated at all concentrations (10-100 nM) tested. VX-induced cell death was also observed by utilizing annexin V/propidium iodide flow cytometry. Finally, VX-induced caspase-3 or -9 activities were reduced with the addition of pralidoxime (2-PAM), one of the current therapeutics used against NA toxicity, and dizocilpine (MK-801). Overall the data presented here show that differentiated NSC-34 cells are sensitive to VX-induced cell death and could be a viable in vitro cell model for screening NA candidate therapeutics.
منابع مشابه
NSC-34 Motor Neuron-Like Cells Are Unsuitable as Experimental Model for Glutamate-Mediated Excitotoxicity
Glutamate-induced excitotoxicity is a major contributor to motor neuron degeneration in the pathogenesis of amyotrophic lateral sclerosis (ALS). The spinal cord × Neuroblastoma hybrid cell line (NSC-34) is often used as a bona fide cellular model to investigate the physiopathological mechanisms of ALS. However, the physiological response of NSC-34 to glutamate remains insufficiently described. ...
متن کاملIn vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملMicroglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملMicroglia as a stem cell
Microglia is considered the only cell population of mesodermal origin, which comprises 10% of the cells in brain parenchyma. Recent neural stem cell (NSC) studies demonstrate that the brain has regenerative potential. NSCs do not give rise to microglial cells, however indicating that NSCs alone cannot complete the regenetion of the brain. Although the role of microglia is not fully understood, ...
متن کاملOsteogenic Differentiation of Mesenchymal Stem Cells Via Osteoblast- Imprinted Substrate: In Vitro and In Vivo Evaluation in Rat Model
BACKGROUND: Stem cells have great effects in clinical cell-based therapy. Accordingly, controlling the behavior and directing the fate of stem cells cultured in the laboratory is an important issue. OBJECTIVES: The aim of this study was to evaluate osteogenic properties of adipose derived mesenchymal stem cells (ADSCs) which differentiated toward osteogenic linage by osteoblast-imprinted substr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicology mechanisms and methods
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2014